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Summary

The health emergency caused by the recent Covid-19 pandemic highlights the

need to identify effective treatments against the virus causing this disease (SARS-

CoV-2). The first clinical trials have been testing repurposed drugs that show

promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400

clinical trials are already under way, the actual number of tested compounds is still

limited to approximately 20, alone or in combination. In addition, knowledge on

their mode of action (MoA) is currently insufficient. Their first results reveal some

inconsistencies and contradictory results and suggest that cohort size and quality

of the control arm are two key issues for obtaining rigorous and conclusive

results. Moreover, the observed discrepancies might also result from differences

in the clinical inclusion criteria, including the possibility of early treatment that

may be essential for therapy efficacy in patients with Covid-19. Importantly,

efforts should also be made to test new compounds with a documented MoA

against SARS-CoV-2 in clinical trials. Successful treatment will probably be based

on multitherapies with antiviral compounds that target different steps of the virus

life cycle. Moreover, a multidisciplinary approach that combines artificial intelli-

gence, compound docking, and robust in vitro and in vivo assays will accelerate

the development of new antiviral molecules. Finally, large retrospective studies

on hospitalized patients are needed to evaluate the different treatments with

robust statistical tools and to identify the best treatment for each Covid-19 stage.

This review describes different candidate antiviral strategies for Covid-19, by

focusing on their mechanism of action.

Highlights

• SARS-CoV-2 is a major threat to public health in the absence of drugs and

vaccines.

• The development of antiviral agents is urgently needed to treat patients with

Covid-19 and limit SARS-CoV-2 dissemination.
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• Several studies identified compounds that limit SARS-CoV-2 replication in vitro

and determined the mode of action of some promising antiviral drugs.

• Drug repurposing for Covid-19 treatment is in progress, and the mode of action of

these compounds needs to be clarified.

1 | INTRODUCTION TO SARS-
CORONAVIRUS 2

Over the last 20 years, three coronaviruses (CoVs) that cause severe

pulmonary infections in humans have crossed the species barrier.1,2

The last of these CoVs, named SARS-CoV-2, emerged in the Hubei

province (China) in December 2019, and rapidly spread worldwide

becoming a major public health threat.3 In approximately 20% of

patients, the disease progresses to severe pneumonia, respiratory and

multi-visceral failure, often leading to death of patients with

comorbidity.4 This worsening is associated with a deregulated immune

response, including exacerbated production of pro-inflammatory cyto-

kines.5 Therefore, specific and effective antiviral therapies are

urgently needed, due to the absence of a vaccine.

Coronaviruses belong to the Nidovirales order, a group of

enveloped viruses with genomic RNA of positive polarity. Their 27 to

34 kb genome encodes 16 nonstructural proteins (nsps) and 4 struc-

tural proteins (spike protein [S], envelope protein [E], membrane pro-

tein [M], and nucleoprotein [N]).6 The virus life cycle, described in

Figure 1, begins by the attachment of the viral particle to the

F IGURE 1 SARS-CoV-2 life cycle and potential mechanisms of action of currently evaluated therapeutics. SARS-CoV-2 life cycle and the
presumed mechanisms of action (MoA) of the main SARS-CoV-2 replication inhibitors. Different compounds are assessed to find compounds
targeting the different steps of SARS-CoV-2 life cycle. Molecules currently in clinical trials are indicated by a gray star. Therapeutic strategies
based on antiviral compounds are indicated in red, and approved drugs used for other diseases or selected by virtual screening are indicated in
yellow. The black question marks indicate unknown or elusive MoA in the context of CoV infection. *Corresponding to antibody (Ab) strategies
including monoclonal antibodies and plasma from convalescent patient. The Biorender website was used to generate this figure
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angiotensin-converting enzyme 2 (ACE2) cell surface receptor, medi-

ated by the S protein.7,8 Virus entry is achieved by endocytosis and/or

direct fusion of the cell and viral membranes. This step requires S pro-

tein activation. The S protein is synthesized as an inactive precursor

that is inserted in the viral membrane, and requires two subsequent

cleavages by cellular proteases to become functionally active. Differ-

ent cellular proteases, such as furin-like enzymes and the transmem-

brane protease serine 2 (TMPRSS2), may cleave the S protein in two

subunits, S1 and S2, in a process called “priming.”9,10 A recent study

showed that this furin-mediated cleavage is important for virus entry

in lung cells.11 In addition, for virus entry, a second proteolytic cleav-

age is required at the S20 site localized immediately upstream of the

fusion peptide,12,13 and seems to involve at least TMPRSS2.14 The

viral genome is then released into the cytoplasm of the infected cells.

This allows the translation of the viral mRNA into two polyprotein

precursors, pp1a and pp1ab, controlled by a −1 ribosomal frameshift.

These polyprotein precursors are then cleaved by two viral proteases,

chymotrypsin-like 3 (3CLpro) and papain-like (PLpro), to generate the

16 nsps (nsp1 to 16). Many of these proteins participate in the forma-

tion of the replication and transcription complex that orchestrates

genome replication, mRNA synthesis and capping. At the final stage of

viral infection, the N protein assembles with the neo-synthesized viral

genome to form the nucleocapsid that associates with the viral struc-

tural proteins to generate new virions released by exocytosis.6

The ongoing Covid-19 pandemic has already caused at least

4 million confirmed cases and more than 250 000 deaths. In

response to this global health emergency, public health measures to

control the virus spread have been put in place and efforts to iden-

tify potential antiviral molecules and to develop a vaccine have been

intensified. The explored antiviral strategies are mainly based on

existing drugs that were developed to treat viral infection or other

diseases. Moreover, the many different clinical trials currently in pro-

gress (more than 2400) are testing a limited set of drugs, alone or in

combination.15 Although the drugs used in these therapeutic assays

have shown some inhibitory effect in SARS-CoV-2-infected cells

in vitro, the molecular bases of their antiviral activity are often

poorly understood, except for nucleoside analogs (eg, favipiravir for

influenza virus) and fusion inhibitors (eg, arbidol). In addition, while

waiting for the final results of these clinical studies, important con-

cerns have arisen, such as the risk of inappropriate self-treatment,

the potential toxicity or adverse effects of some of these com-

pounds, and the risk of depletion of pharmacy stocks needed for the

treatment of other pathologies. On the other hand, the emergence

of SARS-CoV and Middle East respiratory syndrome coronavirus

(MERS-CoV) has led to a growing number of publications that

describe new CoV inhibitors and precisely characterize their mode of

action (MoA). In this review, we summarize promising candidate mol-

ecules that could be repurposed and anti-CoV-specific drugs derived

from ongoing research on CoVs, for which we provide additional

information on their potential MoA based on the current knowledge

on SARS-COV-2 life cycle. In this review, we do not describe vaccine

strategies, and supporting treatments, although they are also impor-

tant for Covid-19 management.

2 | CLASSICAL ANTIVIRAL APPROACHES

In the absence of specific therapeutics, supportive care (eg, oxygen

therapy or mechanical ventilation) remains the only option for manag-

ing severe Covid-19 symptoms.16 To limit virus proliferation in the

early disease stages and reduce its severity, one important strategy is

to develop treatments based on existing antiviral compounds. Follow-

ing the rapid emergence and spread of SARS-CoV in 2003 and MERS-

CoV in 2012, important efforts were made to identify drugs that tar-

get specific steps of the coronavirus life cycle (Figure 1) including

(a) the interaction with ACE2 receptors, (b) enzymes that catalyze S

protein cleavage, (c) viral entry, (d) polyprotein processing, and

(e) replication/transcription complex. These compounds have been

rapidly screened in SARS-COV-2-infected cells, and many of them are

now assessed in small animal models and/or clinical trials.

2.1 | Antibody neutralization

A useful therapeutic strategy consists in interfering with the first

step of the viral cycle by targeting the interaction of the viral S pro-

tein with the cell surface receptors. It was recently demonstrated

that sera from patients with Covid-19 contain neutralizing anti-

bodies (Abs) that can limit SARS-CoV-2 viral infection in vitro.17

Moreover, administration of plasma from convalescent patients has

shown some efficacy in patients with respiratory distress,

suggesting that passive immunity might help limit SARS-CoV-2

infection.18-20 Clinical trials using plasmapheresis are under way to

evaluate the efficacy of this strategy.21,22 Nevertheless, recent ran-

domized clinical trial have not shown significant improve for patient

under convalescent plasma therapy.23 The development of mono-

clonal Abs (mAbs) against the viral S protein is also an option.24

This approach was used in the latest Ebola outbreak and led to the

development of ZMapp.25 Neutralizing mAbs against the SARS-

and MERS-CoV S protein have antiviral effect in cultured cells and

animals infected with SARS-CoV or MERS-CoV.26-30 Thus, the

development of mAbs targeting the S protein is currently in pro-

gress.31 The development of mAbs against ACE2 is also an interest-

ing option to reduce viral entry,32,33 but could be more risky due to

potential interference with the physiological function of the ACE2

receptor, which is involved in angiotensin maturation. Another pos-

sibility is to use human recombinant soluble ACE2 to block SARS-

CoV-2 entry into the cell.34 This strategy seems to limit SARS-

CoV-2 infection in cell culture, but the stability of the soluble

receptor in the serum of infected patients and the potential adverse

effects in patients remain to be determined. Notably, it has also

been shown that ACE2 therapy protects mice from lung injury that

can be observed during SARS-CoV infection.35 Interestingly, mAbs

against other cellular receptors, such as CD147, also can block

viral infection in cell culture, and the direct interaction between

CD147 and the S protein has been demonstrated by

coimmunoprecipitation.36 These first results need be confirmed,

but they suggest that SARS-CoV-2 could use an alternative entry
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receptor in some cell types. A clinical trial using an anti-CD147

antibody (meplazumab) is currently ongoing in China37; however,

its antiviral effect is uncertain because the virus binds with higher

affinity to the ACE2 receptor.33

2.2 | Antiviral molecules

Although SARS-CoV-2 has spread very recently, several antiviral com-

pounds previously tested against other pathogenic CoVs have been

already tried patients with Covid-19 (Table 1). The first strategy is to

interfere with virus entry using molecules that block virus-cell fusion.

This includes umifenovir (Arbidol), an antiviral molecule initially devel-

oped for the treatment of influenza infection.62 Interestingly,

umifenovir has a broad spectrum antiviral activity by inhibiting the

entry of other viruses63 and stimulating the immune response.38

Moreover, umifenovir inhibits SARS-CoV-2 infection in vitro with an

IC50 of 10 μM.39 Although not yet approved by the FDA, this broad-

spectrum antiviral molecule is used in China and Russia for influenza

treatment, and therefore was rapidly included in several clinical trials

alone or in combination with other compounds. The first comparative

study performed in a small group of patients showed a significant

decrease of the viral load in the arm treated with umifenovir in combi-

nation with the protease inhibitors lopinavir/ritonavir (n = 16) com-

pared with the arm treated with lopinavir/ritonavir alone (n = 17).41

Nevertheless, one of the limitations of this study is the small-sample

size and investigation including large cohort need to be performed.

After virus entry, the polyproteins pp1a and pp1ab are processed

into 16 nsps by the viral proteases 3CLpro and PLpro. These cleavage

events play a key role in the virus life cycle because they lead to the

generation, among others, of the RNA-dependent RNA polymerase

(RdRp) required for viral RNA replication and transcription. Due to the

high conservation of the cleavage sites and of the protease structures,

these proteases are an optimal antiviral target. A recent study

described the X-ray structures of SARS-CoV-2 3CLpro alone and in

the presence of an α-ketoamide inhibitor.55 Based on these findings,

the α-ketoamide inhibitor was optimized and showed antiviral activity

against SARS-CoV-2 at concentrations lower than 10 μM in Calu3

lung cells. Protease inhibitors used in human immunodeficiency virus

(HIV) therapy, such as lopinavir/ritonavir (a combination known as

Kaletra), nelfinavir, also limit SARS-CoV-2 propagation in infected

cells,39,57,64 and they are being tested in several ongoing clinical tri-

als.56,60,61 However, the molecular basis of their inhibition mechanism

has not been elucidated yet due to the fact that HIV and CoV prote-

ases belong to different protease classes. Unfortunately, the first clini-

cal trials reported that lopinavir, combined with the ritonavir that

boosts lopinavir levels by interfering with cytochrome P450 metabo-

lism, does not have any significant effect on SARS-CoV-2 infection.58

Historically, the most attractive antiviral compounds are those

that block virus replication by inhibiting RdRp activity. Nucleotide and

nucleoside analogs are among the most promising groups of RdRp

inhibitors. Their antiviral effect can be attributed to three nonmutually

exclusive mechanisms. First, incorporation of nucleotide analogs (NAs)

in the viral RNA by the error-prone polymerase can induce early chain

termination in an obligate (immediate) or nonobligate fashion,

resulting in incomplete, noninfectious viral RNA. The second mecha-

nism, named error catastrophe, is associated with the insertion and

extension of NAs throughout the viral RNA that result in many errors

during RNA synthesis.65,66 Third, several NAs deplete the cytoplasmic

levels of their equivalent native nucleotides, causing nucleotide pool

imbalances that affect RdRp fidelity.67 While nucleoside analogs have

been successfully used for the treatment of other viral diseases, the

situation is complicated in CoVs due to the presence of a viral exonu-

clease (nsp14 ExoN) with proof-reading activity that can reduce NA

antiviral effect.68,69 Indeed, in vitro studies show that SARS-CoV poly-

merase can incorporate ribavirin triphosphate during replication, but

this purine NA is detected by nsp14 ExoN and eliminated by the

repair mechanism.68 This might partly explain the poor antiviral effect

of ribavirin in SARS- and MERS-CoV infection.43,70 On the other hand,

molecules such as remdesivir, initially developed against Ebola virus,45

TABLE 1 Main antiviral molecules currently being tested against SARS-CoV-2 infection

Compounds Target/MoA Tests in vitro (CoV) Clinical trials SARS-CoV-2

Arbidol hydrochloride Endocytosis/inhibition membrane fusion (38-40) NCT04252885 (41,42)

Ribavirin RNA polymerase/inhibition (43,44) No data

Remdesivir RNA polymerase/inhibition (45-48) (49,50)

Favipiravir RNA polymerase/inhibition No data ChiCTR2000030894, NCT04280705, NCT04292730,

NCT04292899, NCT04315948, WHO Solidarity

Trial (42,51)

β-d-N4-hydroxycytidine RNA polymerase/inhibition (52,53) No data

Sofosbuvir RNA polymerase/inhibition (54) No data

α-ketoamide inhibitor Proteases/inhibition (55) No data

Ritonavir Proteases/inhibition (56) NCT04252885 (41,49,57-59)

Lopinavir Proteases/inhibition (56,60) NCT04252885 (41,49,57-59)

Nelfinavir Proteases/inhibition (61) No data

Dolutegravir Proteases/inhibition (39) No data

Abbreviations: CoV, coronaviruses; MoA, mode of action.
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appear to have an inhibitory effect against SARS-CoV and MERS-CoV

in vitro at the submicro- to micromolar range, depending on the

infected cell type.46,71,72 Remdesivir evaluation in a primate model

infected by SARS-CoV showed that the antiviral activity is dependent

on early treatment after infection.47 Remdesivir is incorporated into

nascent RNA by the SARS-CoV-2 RdRp complex.54 Several clinical tri-

als, such as the European DISCOVERY clinical program,49 are

assessing remdesivir safety and efficacy in hospitalized patients with

Covid-19. The first results of these compassionate-use studies

showed clinical improvement in 68% of patients treated with

remdesivir in a small cohort (n = 53). Notably however, these studies

were not randomized and furthermore did not report the change in

viral load following treatment.50 While some adverse effects were

reported, including abnormal liver function, diarrhea, rashes, renal

impairment, and hypotension, remdesivir was licensed in May 2020 as

an emergence treatment against SARS-CoV-2.

The cytidine analog β-d-N4-hydroxycytidine (NHC) also is a poten-

tial anti-CoV compound. NHC inhibits MERS-CoV, SARS-CoV, and

SARS-CoV-2 replication in vitro in the micromolar range (0.09-0.3 μM),

without apparent interference from the viral proofreading activity of

nsp14.52 In infected cells, decreased viral replication was associated

with increased mutation frequency, supporting a mechanism of lethal

mutagenesis. Moreover, the orally bioavailable β-D-N4-hydrox-

ycytidine-50-isopropyl ester improved pulmonary function and reduced

virus titer and body weight loss in mice infected with SARS- and

MERS-CoV. These promising results suggest that NHC molecules

might be considered for Covid-19 treatment,53,72 and should be

assessed in clinical trials. Another potential treatment is the guanine

analog favipiravir (T-705) that was initially developed for influenza

virus,73 but has a broad-spectrum activity, with antiviral effects against

flaviviruses,74,75 alphaviruses,76 noroviruses,77 and Ebola virus.78-80

Favipiravir was approved for influenza treatment in Japan in 2014, and

is currently assessed for Covid-19 treatment in several clinical tri-

als.42,51 The preliminary results suggest a faster viral clearance time in

the favipiravir arm compared with the control arm.51 More recently,

in vitro studies demonstrate that favipiravir exerts an antiviral effect as

a nucleotide analogue through a combination of chain termination,

slowed RNA synthesis and lethal mutagenesis. The use of favipiravir in

infected cells induces C-to-U and G-to-A changes.81 A last nucleoside

analog potentially active against SARS-CoV-2 is sofosbuvir, a broad-

acting antiviral approved for hepatitis C virus infection management. A

recent study showed that sofosbuvir triphosphate is incorporated by

recombinant SARS-CoV-2 RdRp during RNA elongation.54 More work

is needed to confirm its antiviral effect in infected cells and animal

models before moving to clinical trials.

3 | DRUG REPOSITIONING STRATEGIES
FOR COVID-19 TREATMENT

The fastest option for the treatment of Covid-19 is the identification

of already approved drugs that were developed for other diseases,

but that show inhibitory activity against SARS-CoV-2 in infected cells.

The main advantages of this strategy are that these drugs are available

on the market, and their safety and toxicity profiles are already docu-

mented. However, their MoA against the virus is often speculative,

and the efficacy and clinical doses required for treatment in patients

with Covid-19 are unknown, due to the absence of large-scale clinical

studies. Moreover, it is important to consider the risk of overdose and

of unexpected increase of viral load or symptoms. Several teams have

already set up platforms to screen FDA-approved libraries using

SARS-CoV-2 infected cells.39,64,82 Although the chemical libraries and

experimental conditions used in these studies are quite different, a

comparative analysis of their results reveals that some compounds,

such as chloroquine derivatives, have been identified in different

experimental conditions. Moreover, several groups reported the ant-

iviral activity of FDA-approved compounds, and some of them are

already tested in clinical trials.15 In this review, we cannot discuss all

drugs identified by this strategy. Therefore, we selected the key com-

pounds that are already in clinical trials and the most interesting clas-

ses of compounds, based on their potential MoA on CoV life cycle

inferred from their known activity.

3.1 | Immunomodulators

As some patients with Covid-19 show an inefficient antiviral

response, it has been suggested that immunomodulators might

restore the immune system homeostasis. For instance, interferon

(IFN) could be used during the early stages of infection to boost the

innate immune response and promote viral clearance. IFN treatments

are being tested in several clinical trials, but results are not available

yet. However, as SARS-CoV-2 infection may also be accompanied by

a dysregulated immune response leading to a massive production of

pro-inflammatory cytokines, IFN treatment could have unexpected

effects.5,83-86 Indeed, IFN triggers overexpression of ACE2, even in

cell lines with low basal expression level, leading to a larger dissemina-

tion of SARS-CoV-2.87 Conversely, in the second phase of the disease,

the use of molecules that limit the effect of the cytokine storm could

be advantageous. For instance, the mAbs mepolizumab against inter-

leukin (IL)-5, tocilizumab against IL-6 receptor,88 as well as anakinra

an interleukin 1 receptor antagonist89 could control the immune

response, and be of therapeutic interest for managing the production

of pro-inflammatory cytokines in patients with severe infection.90

Finally, Dexamethasone, used to reduce inflammation, has been

tested in RECOVERY clinical trial and shown first promising results.

Indeed, treatment with Dexamethasone reduces death by one-third

to one-fifth.91

3.2 | Repositioned drugs that interfere with the
viral life cycle

Several therapeutic molecules (Table 2), identified in antiviral screen-

ings performed in infected cells, target the renin/angiotensin path-

way.39,100,101 The MoA of these class of inhibitors is speculative.
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Interestingly, ACE2 belongs to this pathway. An in vivo study has

shown that inhibition of the renin/angiotensin pathway upregulates

of ACE2 which can increase susceptibility to SARS-CoV-2 infec-

tion.102 More recently, it has been shown that treatment target this

pathway is not associated with higher severity of COVID19103 Addi-

tional work is needed to understand how these compounds inhibit the

virus before planning clinical trials.

Once the virus binds to the target cell, the S protein is cleaved by

cellular proteases into the S1 and S2 subunits (priming), and also

upstream of the fusion peptide (S2’ cleavage site). The serine protease

TMPRSS2, which is strongly expressed in lung cells, can cleave a vari-

ety of CoV S proteins,12,13 and seems to play a key role in virus

entry.14 Camostat mesylate, a TMPRSS2 inhibitor approved for clinical

use, blocks S protein processing in vitro.92 Moreover, camostat

mesylate and its derivative nafamostat mesylate can inhibit (in the nM

to μM range) the entry of vesicular stomatitis virus pseudotypes carry-

ing the SARS-CoV-2 S protein in different cell types that overexpress

TMPRSS2.92,104 This observation suggests that inhibition of S protein

priming blocks ACE2-mediated entry. However, the inhibition

observed with camostat mesylate and nafamostat mesylate in VeroE6

cells infected by SARS-CoV-2 is lower and probably not enough for a

therapeutic utilization of camostat mesylate. The picture is further

complicated because other cellular proteases could be implicated in S

protein processing. Indeed, cathepsin L105 and furin9 might be

involved in S protein activation, depending on the infected cell type.

Consequently, inhibitors of these different enzymes might limit virus

propagation in some cell types, but their efficacy in the clinic could be

limited. Perhaps, the best option is to combine furin and TMPRSS2

inhibitors to limit virus propagation.14

Interestingly, several compounds identified in different screens of

infected cells are implicated in endosomal acidification.39,100,101

Increasing the endosomal pH might limit viral/endosomal membrane

fusion, which is necessary for the release of the viral genome into the

cytoplasm of the host cell. Two recent studies showed that proton

pump inhibitors, such as omeprazole and vonoprazan, reduce the

infection of cells by SARS-CoV-2.39,64 In addition, chloroquine and

hydroxychloroquine (HCQ), which have been extensively used for the

treatment of malaria with known safety and efficacy, also limit acidifi-

cation of endosomes, Golgi vesicles, and lysosomes.106 These mole-

cules significantly reduce SARS-CoV and SARS-CoV-2 infection

in vitro.48,93-95,106,107 However, a recent study reported that HCQ

does not have any effect on viral load levels and does not protect

macaques against SARS-CoV infection.108 Moreover, chloroquine

derivatives have immunosuppressive effects and inhibit the activation

of innate immune receptors, such as toll-like receptors109 and have

been associated with some adverse cardiac effects. Many clinical

studies are currently testing these molecules,97,98 and their initial

results are controversial.110 Randomized, double-blind studies with a

larger number of patients should bring robust conclusions. Recent

in vitro studies have also suggested the therapeutic effect of the

HCQ-azithromycin combination.98 Azithromycin is an antibiotic that

has also antiviral activity in respiratory viral infections.111 Interest-

ingly, the MoA of azithromycin and HCQ may be related to the modu-

lation of the endosomal and trans-Golgi network pH.112,113 In

addition, azithromycin plays a role in regulating interleukin production

that might help to control the immune response and prevent symptom

worsening.114-116 Azithromycin may also inhibit viral invasion by

interfering with the CD147-mediated recognition mechanism.117 Nev-

ertheless, both the FDA and the World Health Organization (WHO)

have removed their support for the use of HCQ and chloroquine for

COVID-19, consequently the status of ongoing trials must be

questioned.

More recently, it has been reported that ivermectin inhibits

SARS-CoV-2 with an ~5000-fold reduction in viral RNA after

48 hours.99 Ivermectin is a FDA-approved antiparasitic molecule, ini-

tially identified as an inhibitor of HIV protein nuclear import.118 Its

broad-spectrum antiviral activity was documented in vitro.119,120 Iver-

mectin perturbs nuclear import through IMPα/β1; however, the role

of this machinery during the CoV life cycle has not been elucidated

yet. Nevertheless, an observational study reported survival benefits

TABLE 2 Main repositioning molecules currently being tested against SARS-CoV-2 infection

Compounds Target/MoA

Tests in

vitro (CoV) Clinical trials SARS-CoV-2

Antivirals

Nafamostat mesylate TMPRSS2/inhibitor (92) No data

Camostat mesylate TMPRSS2/inhibitor (39,92) No data

Chloroquine

Hydroxychloroquine

pH increases in endosomal compartment (39,48,93-96) “Solidarity,” “Discovery” NCT04358068

(49,97,98)

Azithromycin

(antibiotic)

pH increases in endosomal compartment/

immunomodulator

(39) NCT04358068 (98)

Omeprazole PPI (39) No data

Vonoprazan PPI (39) No data

Ivermectin Limits viral infection (99) No data

Oseltamivir Neuraminidase inhibitor No data No data

Note: Clinical trials web site: https://clinicaltrials.gov/ct2/results?cond=SARS-CoV2&term=&cntry=&state=&city=&dist=.

Abbreviations: CoV, coronaviruses; MoA, mode of action; PPI, proton pump inhibitor; TMPRSS2, transmembrane protease serine 2.
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during hospitalization,121 but no data on viral load, highlighting the

necessity to validate this observation in clinical trials. Recent review

presents the pharmacokinetic properties of ivermectin, and highlights

that the dose currently used for parasitic disease do not effective

against SARS infection.122

Finally, oseltamivir, a neuraminidase inhibitor that prevents influ-

enza viral particle release, is also investigated.123 Like for ritonavir/

lopinavir, there is no molecular basis to support these trials because to

the best of our knowledge, CoVs (unlike influenza viruses) do not rely

on neuraminidases during their life cycle. If antiviral effect are

observed, the off-target mechanisms will have to be elucidated.
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